8.6.11 problem 11

Internal problem ID [781]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Chapter 1 review problems. Page 78
Problem number : 11
Date solved : Tuesday, March 04, 2025 at 11:45:01 AM
CAS classification : [[_homogeneous, `class A`], _rational, _Bernoulli]

\begin{align*} x^{2} y^{\prime }&=x y+3 y^{2} \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 14
ode:=x^2*diff(y(x),x) = x*y(x)+3*y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x}{-3 \ln \left (x \right )+c_1} \]
Mathematica. Time used: 0.126 (sec). Leaf size: 21
ode=x^2*D[y[x],x] == x*y[x]+3*y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)\to \frac {x}{-3 \log (x)+c_1} \\ y(x)\to 0 \\ \end{align*}
Sympy. Time used: 0.201 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), x) - x*y(x) - 3*y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {x}{C_{1} - 3 \log {\left (x \right )}} \]