75.26.8 problem 775

Internal problem ID [17157]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 19. Basic concepts and definitions. Exercises page 199
Problem number : 775
Date solved : Friday, March 14, 2025 at 04:49:24 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=\frac {t +y \left (t \right )}{y \left (t \right )+x \left (t \right )}\\ \frac {d}{d t}y \left (t \right )&=\frac {t +x \left (t \right )}{y \left (t \right )+x \left (t \right )} \end{align*}

Maple. Time used: 8.885 (sec). Leaf size: 1332
ode:=[diff(x(t),t) = (t+y(t))/(x(t)+y(t)), diff(y(t),t) = (t+x(t))/(x(t)+y(t))]; 
dsolve(ode);
 
\begin{align*} \text {Expression too large to display} \\ \left [\{x \left (t \right ) &= \operatorname {RootOf}\left (\textit {\_Z}^{9} c_{1} c_{2} t^{3}-3 \textit {\_Z}^{6} c_{2} t^{3}-1\right )^{3} t +t\}, \left \{y \left (t \right ) = \frac {-x \left (t \right ) \left (\frac {d}{d t}x \left (t \right )\right )+t}{\frac {d}{d t}x \left (t \right )-1}\right \}\right ] \\ \end{align*}
Mathematica
ode={D[x[t],t]==(t+y[t])/(y[t]+x[t]),D[y[t],t]==(x[t]+t)/(y[t]+x[t])}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq((-t - y(t))/(x(t) + y(t)) + Derivative(x(t), t),0),Eq((-t - x(t))/(x(t) + y(t)) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
NotImplementedError :