Internal
problem
ID
[17160]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
20.
The
method
of
elimination.
Exercises
page
212
Problem
number
:
778
Date
solved
:
Thursday, March 13, 2025 at 09:18:04 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+3*x(t)+4*y(t) = 0, diff(y(t),t)+2*x(t)+5*y(t) = 0]; ic:=x(0) = 1y(0) = 4; dsolve([ode,ic]);
ode={D[x[t],t]+3*x[t]+4*y[t]==0,D[y[t],t]+2*x[t]+5*y[t]==0}; ic={x[0]==1,y[0]==4}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(3*x(t) + 4*y(t) + Derivative(x(t), t),0),Eq(2*x(t) + 5*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)