Internal
problem
ID
[17164]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
20.
The
method
of
elimination.
Exercises
page
212
Problem
number
:
782
Date
solved
:
Thursday, March 13, 2025 at 09:18:09 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = y(t)+z(t), diff(y(t),t) = x(t)+z(t), diff(z(t),t) = x(t)+y(t)]; dsolve(ode);
ode={D[x[t],t]==y[t]+z[t],D[y[t],t]==x[t]+z[t],D[z[t],t]==x[t]+y[t]}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-y(t) - z(t) + Derivative(x(t), t),0),Eq(-x(t) - z(t) + Derivative(y(t), t),0),Eq(-x(t) - y(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)