Internal
problem
ID
[17166]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
20.
The
method
of
elimination.
Exercises
page
212
Problem
number
:
784
Date
solved
:
Friday, March 14, 2025 at 04:49:25 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(diff(x(t),t),t)+diff(y(t),t)+x(t) = 0, diff(x(t),t)+diff(diff(y(t),t),t) = 0]; dsolve(ode);
ode={D[x[t],{t,2}]+D[y[t],t]+x[t]==0,D[x[t],t]+D[y[t],{t,2}]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(x(t) + Derivative(x(t), (t, 2)) + Derivative(y(t), t),0),Eq(Derivative(x(t), t) + Derivative(y(t), (t, 2)),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)