76.11.7 problem 7

Internal problem ID [17551]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.1 (Definitions and examples). Problems at page 214
Problem number : 7
Date solved : Tuesday, January 28, 2025 at 10:43:22 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} a \,x^{2} y^{\prime \prime }+b x y^{\prime }+c y&=d \end{align*}

Solution by Maple

Time used: 0.007 (sec). Leaf size: 76

dsolve(a*x^2*diff(y(x),x$2)+b*x*diff(y(x),x)+c*y(x)=d,y(x), singsol=all)
 
\[ y = \frac {x^{-\frac {-a +b +\sqrt {a^{2}+\left (-2 b -4 c \right ) a +b^{2}}}{2 a}} c_{1} c +x^{\frac {a -b +\sqrt {a^{2}+\left (-2 b -4 c \right ) a +b^{2}}}{2 a}} c_{2} c +d}{c} \]

Solution by Mathematica

Time used: 0.073 (sec). Leaf size: 108

DSolve[a*x^2*D[y[x],{x,2}]+b*x*D[y[x],x]+c*y[x]==d,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to \frac {d}{c}+x^{-\frac {\sqrt {a} \sqrt {c} \sqrt {\frac {a^2-2 a (b+2 c)+b^2}{a c}}-a+b}{2 a}} \left (c_2 x^{\frac {\sqrt {c} \sqrt {\frac {a^2-2 a (b+2 c)+b^2}{a c}}}{\sqrt {a}}}+c_1\right ) \]