Internal
problem
ID
[783]
Book
:
Differential
equations
and
linear
algebra,
3rd
ed.,
Edwards
and
Penney
Section
:
Chapter
1
review
problems.
Page
78
Problem
number
:
13
Date
solved
:
Thursday, March 13, 2025 at 03:52:46 PM
CAS
classification
:
[`y=_G(x,y')`]
ode:=diff(y(x),x) = 1+x^2+y(x)^2+x^2*y(x)^4; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x] == 1+x^2+y[x]^2+x^2*y[x]^4; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x**2*y(x)**4 - x**2 - y(x)**2 + Derivative(y(x), x) - 1,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x**2*y(x)**4 - x**2 - y(x)**2 + Derivative(y(x), x) - 1 cannot be solved by the lie group method