76.12.1 problem 1
Internal
problem
ID
[17557]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.2
(Theory
of
second
order
linear
homogeneous
equations).
Problems
at
page
226
Problem
number
:
1
Date
solved
:
Tuesday, January 28, 2025 at 10:43:43 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
\begin{align*} t y^{\prime \prime }+3 y&=t \end{align*}
With initial conditions
\begin{align*} y \left (1\right )&=1\\ y^{\prime }\left (1\right )&=2 \end{align*}
✓ Solution by Maple
Time used: 0.296 (sec). Leaf size: 82
dsolve([t*diff(y(t),t$2)+3*y(t)=t,y(1) = 1, D(y)(1) = 2],y(t), singsol=all)
\[
y = \frac {2 \sqrt {t}\, \left (\sqrt {3}\, \operatorname {BesselY}\left (0, 2 \sqrt {3}\right )-\frac {5 \operatorname {BesselY}\left (1, 2 \sqrt {3}\right )}{2}\right ) \pi \operatorname {BesselJ}\left (1, 2 \sqrt {3}\, \sqrt {t}\right )}{3}-\frac {2 \sqrt {t}\, \left (\operatorname {BesselJ}\left (0, 2 \sqrt {3}\right ) \sqrt {3}-\frac {5 \operatorname {BesselJ}\left (1, 2 \sqrt {3}\right )}{2}\right ) \pi \operatorname {BesselY}\left (1, 2 \sqrt {3}\, \sqrt {t}\right )}{3}+\frac {t}{3}
\]
✓ Solution by Mathematica
Time used: 0.228 (sec). Leaf size: 673
DSolve[{t*D[y[t],{t,2}]+3*y[t]==t,{y[1]==1,Derivative[1][y][1]==2}},y[t],t,IncludeSingularSolutions -> True]
\[
y(t)\to \frac {\sqrt {t} \left (\operatorname {BesselJ}\left (1,2 \sqrt {3} \sqrt {t}\right ) \left (\pi \operatorname {BesselY}\left (1,2 \sqrt {3}\right ) \left (\sqrt {3} \left (\operatorname {BesselJ}\left (2,2 \sqrt {3}\right )-\operatorname {BesselJ}\left (0,2 \sqrt {3}\right )\right ) G_{2,4}^{2,1}\left (3\left | \begin {array}{c} 0,-\frac {1}{2} \\ 0,1,-1,-\frac {1}{2} \\ \end {array} \right .\right )+6 (2 \operatorname {Hypergeometric0F1Regularized}(3,-3)-3 \operatorname {Hypergeometric0F1Regularized}(4,-3)) \operatorname {BesselY}\left (1,2 \sqrt {3}\right )\right )+\sqrt {3} \pi \operatorname {BesselJ}\left (1,2 \sqrt {3}\right ) \left (\left (\operatorname {BesselY}\left (0,2 \sqrt {3}\right )-\operatorname {BesselY}\left (2,2 \sqrt {3}\right )\right ) G_{2,4}^{2,1}\left (3\left | \begin {array}{c} 0,-\frac {1}{2} \\ 0,1,-1,-\frac {1}{2} \\ \end {array} \right .\right )-2 \operatorname {BesselY}\left (1,2 \sqrt {3}\right )^2\right )+3 \left (\operatorname {BesselY}\left (0,2 \sqrt {3}\right )-\sqrt {3} \operatorname {BesselY}\left (1,2 \sqrt {3}\right )-\operatorname {BesselY}\left (2,2 \sqrt {3}\right )\right )\right )+\sqrt {3} \pi t \operatorname {BesselJ}\left (1,2 \sqrt {3} \sqrt {t}\right ) \left (\left (\operatorname {BesselJ}\left (0,2 \sqrt {3}\right )-\operatorname {BesselJ}\left (2,2 \sqrt {3}\right )\right ) \operatorname {BesselY}\left (1,2 \sqrt {3}\right )+\operatorname {BesselJ}\left (1,2 \sqrt {3}\right ) \left (\operatorname {BesselY}\left (2,2 \sqrt {3}\right )-\operatorname {BesselY}\left (0,2 \sqrt {3}\right )\right )\right ) G_{2,4}^{2,1}\left (\sqrt {3} \sqrt {t},\frac {1}{2}| \begin {array}{c} 0,-\frac {1}{2} \\ 0,1,-1,-\frac {1}{2} \\ \end {array} \right )+\operatorname {BesselY}\left (1,2 \sqrt {3} \sqrt {t}\right ) \left (3 \sqrt {3} \pi t^2 \operatorname {Hypergeometric0F1Regularized}(3,-3 t) \left (\left (\operatorname {BesselJ}\left (2,2 \sqrt {3}\right )-\operatorname {BesselJ}\left (0,2 \sqrt {3}\right )\right ) \operatorname {BesselY}\left (1,2 \sqrt {3}\right )+\operatorname {BesselJ}\left (1,2 \sqrt {3}\right ) \left (\operatorname {BesselY}\left (0,2 \sqrt {3}\right )-\operatorname {BesselY}\left (2,2 \sqrt {3}\right )\right )\right )+\pi \left (3 \sqrt {3} \operatorname {Hypergeometric0F1Regularized}(3,-3) \left (\operatorname {BesselJ}\left (0,2 \sqrt {3}\right )-\operatorname {BesselJ}\left (2,2 \sqrt {3}\right )\right ) \operatorname {BesselY}\left (1,2 \sqrt {3}\right )-3 \operatorname {BesselJ}\left (1,2 \sqrt {3}\right ) \left (\sqrt {3} \operatorname {Hypergeometric0F1Regularized}(3,-3) \operatorname {BesselY}\left (0,2 \sqrt {3}\right )-\sqrt {3} \operatorname {Hypergeometric0F1Regularized}(3,-3) \operatorname {BesselY}\left (2,2 \sqrt {3}\right )+(4 \operatorname {Hypergeometric0F1Regularized}(3,-3)-6 \operatorname {Hypergeometric0F1Regularized}(4,-3)) \operatorname {BesselY}\left (1,2 \sqrt {3}\right )\right )+2 \sqrt {3} \operatorname {BesselJ}\left (1,2 \sqrt {3}\right )^2 \operatorname {BesselY}\left (1,2 \sqrt {3}\right )\right )+3 \left (-\operatorname {BesselJ}\left (0,2 \sqrt {3}\right )+\sqrt {3} \operatorname {BesselJ}\left (1,2 \sqrt {3}\right )+\operatorname {BesselJ}\left (2,2 \sqrt {3}\right )\right )\right )\right )}{3 \left (\left (\operatorname {BesselJ}\left (2,2 \sqrt {3}\right )-\operatorname {BesselJ}\left (0,2 \sqrt {3}\right )\right ) \operatorname {BesselY}\left (1,2 \sqrt {3}\right )+\operatorname {BesselJ}\left (1,2 \sqrt {3}\right ) \left (\operatorname {BesselY}\left (0,2 \sqrt {3}\right )-\operatorname {BesselY}\left (2,2 \sqrt {3}\right )\right )\right )}
\]