Internal
problem
ID
[17180]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
22.
Integration
of
homogeneous
linear
systems
with
constant
coefficients.
Eulers
method.
Exercises
page
230
Problem
number
:
806
Date
solved
:
Thursday, March 13, 2025 at 09:18:20 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 4*x(t)-5*y(t), diff(y(t),t) = x(t)]; ic:=x(0) = 0y(0) = 1; dsolve([ode,ic]);
ode={D[x[t],t]==4*x[t]-4*y[t],D[y[t],t]==x[t]}; ic={x[0]==0,y[0]==1}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-4*x(t) + 5*y(t) + Derivative(x(t), t),0),Eq(-x(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)