75.30.2 problem 811

Internal problem ID [17185]
Book : A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section : Chapter 3 (Systems of differential equations). Section 23. Methods of integrating nonhomogeneous linear systems with constant coefficients. Exercises page 234
Problem number : 811
Date solved : Thursday, March 13, 2025 at 09:18:25 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=x \left (t \right )+y \left (t \right )-\cos \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=-y \left (t \right )-2 x \left (t \right )+\cos \left (t \right )+\sin \left (t \right ) \end{align*}

With initial conditions

\begin{align*} x \left (0\right ) = 1\\ y \left (0\right ) = -2 \end{align*}

Maple. Time used: 0.195 (sec). Leaf size: 32
ode:=[diff(x(t),t) = x(t)+y(t)-cos(t), diff(y(t),t) = -y(t)-2*x(t)+cos(t)+sin(t)]; 
ic:=x(0) = 1y(0) = -2; 
dsolve([ode,ic]);
 
\begin{align*} x \left (t \right ) &= -\sin \left (t \right )+\cos \left (t \right )-t \cos \left (t \right ) \\ y \left (t \right ) &= -2 \cos \left (t \right )+t \sin \left (t \right )+t \cos \left (t \right ) \\ \end{align*}
Mathematica. Time used: 0.008 (sec). Leaf size: 31
ode={D[x[t],t]==x[t]+y[t]-Cos[t],D[y[t],t]==-y[t]-2*x[t]+Cos[t]+Sin[t]}; 
ic={x[0]==1,y[0]==-2}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to -\sin (t)-t \cos (t)+\cos (t) \\ y(t)\to t \sin (t)+(t-2) \cos (t) \\ \end{align*}
Sympy. Time used: 0.191 (sec). Leaf size: 110
from sympy import * 
t = symbols("t") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-x(t) - y(t) + cos(t) + Derivative(x(t), t),0),Eq(2*x(t) + y(t) - sin(t) - cos(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = \frac {t \sin ^{3}{\left (t \right )}}{2} - \frac {t \sin ^{2}{\left (t \right )} \cos {\left (t \right )}}{2} + \frac {t \sin {\left (t \right )} \cos ^{2}{\left (t \right )}}{2} - \frac {t \sin {\left (t \right )}}{2} - \frac {t \cos ^{3}{\left (t \right )}}{2} - \frac {t \cos {\left (t \right )}}{2} - \left (\frac {C_{1}}{2} - \frac {C_{2}}{2}\right ) \cos {\left (t \right )} + \left (\frac {C_{1}}{2} + \frac {C_{2}}{2}\right ) \sin {\left (t \right )}, \ y{\left (t \right )} = C_{1} \cos {\left (t \right )} - C_{2} \sin {\left (t \right )} + t \sin ^{2}{\left (t \right )} \cos {\left (t \right )} + t \sin {\left (t \right )} + t \cos ^{3}{\left (t \right )}\right ] \]