Internal
problem
ID
[17187]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
23.
Methods
of
integrating
nonhomogeneous
linear
systems
with
constant
coefficients.
Exercises
page
234
Problem
number
:
813
Date
solved
:
Friday, March 14, 2025 at 04:49:30 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = -4*x(t)-2*y(t)+2/(exp(t)-1), diff(y(t),t) = 6*x(t)+3*y(t)-3/(exp(t)-1)]; dsolve(ode);
ode={D[x[t],t]==-4*x[t]-2*y[t]+2/(Exp[t]-1),D[y[t],t]==6*x[t]+3*y[t]-3/(Exp[t]-1)}; ic={}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(4*x(t) + 2*y(t) + Derivative(x(t), t) - 2/(exp(t) - 1),0),Eq(-6*x(t) - 3*y(t) + Derivative(y(t), t) + 3/(exp(t) - 1),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)