76.12.22 problem 34

Internal problem ID [17578]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.2 (Theory of second order linear homogeneous equations). Problems at page 226
Problem number : 34
Date solved : Tuesday, January 28, 2025 at 10:44:27 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} \left (x -1\right ) y^{\prime \prime }-x y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{x} \end{align*}

Solution by Maple

Time used: 0.006 (sec). Leaf size: 12

dsolve([(x-1)*diff(y(x),x$2)-x*diff(y(x),x)+y(x)=0,exp(x)],singsol=all)
 
\[ y = c_{1} x +{\mathrm e}^{x} c_{2} \]

Solution by Mathematica

Time used: 0.096 (sec). Leaf size: 17

DSolve[(x-1)*D[y[x],{x,2}]-x*D[y[x],x]+y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 e^x-c_2 x \]