Internal
problem
ID
[17198]
Book
:
A
book
of
problems
in
ordinary
differential
equations.
M.L.
KRASNOV,
A.L.
KISELYOV,
G.I.
MARKARENKO.
MIR,
MOSCOW.
1983
Section
:
Chapter
3
(Systems
of
differential
equations).
Section
23.2
The
method
of
undetermined
coefficients.
Exercises
page
239
Problem
number
:
824
Date
solved
:
Thursday, March 13, 2025 at 09:18:40 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t)+x(t)+2*y(t) = 2*exp(-t), diff(y(t),t)+y(t)+z(t) = 1, diff(z(t),t)+z(t) = 1]; ic:=x(0) = 1y(0) = 1z(0) = 1; dsolve([ode,ic]);
ode={D[x[t],t]+x[t]+2*y[t]==2*Exp[-t],D[y[t],t]+y[t]+z[t]==1,D[z[t],t]+z[t]==1}; ic={x[0]==1,y[0]==1,z[0]==1}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(x(t) + 2*y(t) + Derivative(x(t), t) - 2*exp(-t),0),Eq(y(t) + z(t) + Derivative(y(t), t) - 1,0),Eq(z(t) + Derivative(z(t), t) - 1,0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)