76.13.45 problem 54

Internal problem ID [17627]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.3 (Linear homogeneous equations with constant coefficients). Problems at page 239
Problem number : 54
Date solved : Tuesday, January 28, 2025 at 10:46:01 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }+x y^{\prime }+4 y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 19

dsolve(x^2*diff(y(x),x$2)+x*diff(y(x),x)+4*y(x)=0,y(x), singsol=all)
 
\[ y = c_{1} \sin \left (2 \ln \left (x \right )\right )+c_{2} \cos \left (2 \ln \left (x \right )\right ) \]

Solution by Mathematica

Time used: 0.017 (sec). Leaf size: 22

DSolve[x^2*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to c_1 \cos (2 \log (x))+c_2 \sin (2 \log (x)) \]