76.13.52 problem 61

Internal problem ID [17634]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 4. Second order linear equations. Section 4.3 (Linear homogeneous equations with constant coefficients). Problems at page 239
Problem number : 61
Date solved : Tuesday, January 28, 2025 at 10:46:13 AM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y&=0 \end{align*}

Solution by Maple

Time used: 0.003 (sec). Leaf size: 29

dsolve(2*x^2*diff(y(x),x$2)-4*x*diff(y(x),x)+6*y(x)=0,y(x), singsol=all)
 
\[ y = x^{{3}/{2}} \left (c_{1} \sin \left (\frac {\sqrt {3}\, \ln \left (x \right )}{2}\right )+c_{2} \cos \left (\frac {\sqrt {3}\, \ln \left (x \right )}{2}\right )\right ) \]

Solution by Mathematica

Time used: 0.023 (sec). Leaf size: 42

DSolve[2*x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 
\[ y(x)\to x^{3/2} \left (c_2 \cos \left (\frac {1}{2} \sqrt {3} \log (x)\right )+c_1 \sin \left (\frac {1}{2} \sqrt {3} \log (x)\right )\right ) \]