Internal
problem
ID
[17326]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.6
(Exact
equations
and
integrating
factors).
Problems
at
page
100
Problem
number
:
11
Date
solved
:
Thursday, March 13, 2025 at 09:27:17 AM
CAS
classification
:
[_separable]
ode:=x*ln(y(x))+x*y(x)+(y(x)*ln(x)+x*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=(x*Log[y[x]]+x*y[x])+(y[x]*Log[x]+x*y[x])*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x) + x*log(y(x)) + (x*y(x) + y(x)*log(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)