Internal
problem
ID
[17329]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
2.
First
order
differential
equations.
Section
2.6
(Exact
equations
and
integrating
factors).
Problems
at
page
100
Problem
number
:
14
Date
solved
:
Thursday, March 13, 2025 at 09:27:31 AM
CAS
classification
:
[_exact, _rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=9*x^2+y(x)-1-(4*y(x)-x)*diff(y(x),x) = 0; ic:=y(1) = 0; dsolve([ode,ic],y(x), singsol=all);
ode=(9*x^2+y[x]-1)-(4*y[x]-x)*D[y[x],x]==0; ic={y[1]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(9*x**2 - (-x + 4*y(x))*Derivative(y(x), x) + y(x) - 1,0) ics = {y(1): 0} dsolve(ode,func=y(x),ics=ics)
Timed Out