8.6.29 problem 29

Internal problem ID [799]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Chapter 1 review problems. Page 78
Problem number : 29
Date solved : Tuesday, March 04, 2025 at 11:49:44 AM
CAS classification : [_linear]

\begin{align*} y+\left (1+2 x \right ) y^{\prime }&=\left (1+2 x \right )^{{3}/{2}} \end{align*}

Maple. Time used: 0.000 (sec). Leaf size: 18
ode:=y(x)+(1+2*x)*diff(y(x),x) = (1+2*x)^(3/2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {x^{2}+c_1 +x}{\sqrt {2 x +1}} \]
Mathematica. Time used: 0.066 (sec). Leaf size: 43
ode=y[x]+(1+2*x)*D[y[x],x] == (1+2*x)^(3/2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {\frac {x \sqrt {-(2 x+1)^2} (x+1)}{2 x+1}+c_1}{\sqrt {-2 x-1}} \]
Sympy. Time used: 0.345 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-(2*x + 1)**(3/2) + (2*x + 1)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {C_{1} + x^{2} + x}{\sqrt {2 x + 1}} \]