76.20.8 problem 8

Internal problem ID [17756]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 5. The Laplace transform. Section 5.6 (Differential equations with Discontinuous Forcing Functions). Problems at page 342
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 11:02:17 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+y^{\prime }+\frac {5 y}{4}&=t -\operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) \left (t -\frac {\pi }{2}\right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=0 \end{align*}

Solution by Maple

Time used: 12.454 (sec). Leaf size: 63

dsolve([diff(y(t),t$2)+diff(y(t),t)+125/100*y(t)=t-Heaviside(t-Pi/2)*(t-Pi/2),y(0) = 0, D(y)(0) = 0],y(t), singsol=all)
 
\[ y = -\frac {16}{25}-\frac {12 \left (\cos \left (t \right )+\frac {4 \sin \left (t \right )}{3}\right ) \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right ) {\mathrm e}^{-\frac {t}{2}+\frac {\pi }{4}}}{25}+\frac {2 \left (8-10 t +5 \pi \right ) \operatorname {Heaviside}\left (t -\frac {\pi }{2}\right )}{25}+\frac {4 \,{\mathrm e}^{-\frac {t}{2}} \left (-3 \sin \left (t \right )+4 \cos \left (t \right )\right )}{25}+\frac {4 t}{5} \]

Solution by Mathematica

Time used: 0.060 (sec). Leaf size: 241

DSolve[{D[y[t],{t,2}]+D[y[t],t]+12/100*y[t]==t-UnitStep[t-Pi/2]*(t-Pi/2),{y[0]==0,Derivative[1][y][0] ==0}},y[t],t,IncludeSingularSolutions -> True]
 
\[ y(t)\to \begin {array}{cc} \{ & \begin {array}{cc} \frac {25}{234} e^{-\frac {1}{20} \left (5+\sqrt {13}\right ) (2 t+\pi )} \left (\left (325-95 \sqrt {13}\right ) e^{\frac {1}{20} \left (5+\sqrt {13}\right ) \pi }+5 \left (-65+19 \sqrt {13}\right ) e^{\frac {1}{10} \left (5+\sqrt {13}\right ) \pi }-5 \left (65+19 \sqrt {13}\right ) e^{\frac {\sqrt {13} t}{5}+\frac {\pi }{2}}+5 \left (65+19 \sqrt {13}\right ) e^{\frac {1}{20} \left (4 \sqrt {13} t+\left (5+\sqrt {13}\right ) \pi \right )}+39 e^{\frac {1}{20} \left (5+\sqrt {13}\right ) (2 t+\pi )} \pi \right ) & 2 t>\pi \\ \frac {25}{234} e^{-\frac {1}{10} \left (5+\sqrt {13}\right ) t} \left (26 e^{\frac {1}{10} \left (5+\sqrt {13}\right ) t} (3 t-25)+5 \left (65+19 \sqrt {13}\right ) e^{\frac {\sqrt {13} t}{5}}-95 \sqrt {13}+325\right ) & \text {True} \\ \end {array} \\ \end {array} \]