8.7.1 problem 1

Internal problem ID [807]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 1
Date solved : Tuesday, March 04, 2025 at 11:51:53 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-y&=0 \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0\\ y^{\prime }\left (0\right )&=5 \end{align*}

Maple. Time used: 0.006 (sec). Leaf size: 15
ode:=diff(diff(y(x),x),x)-y(x) = 0; 
ic:=y(0) = 0, D(y)(0) = 5; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = -\frac {5 \,{\mathrm e}^{-x}}{2}+\frac {5 \,{\mathrm e}^{x}}{2} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 21
ode=D[y[x],{x,2}]-y[x]==0; 
ic={y[0]==0,Derivative[1][y][0] ==5}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {5}{2} e^{-x} \left (e^{2 x}-1\right ) \]
Sympy. Time used: 0.086 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) + Derivative(y(x), (x, 2)),0) 
ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 5} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \frac {5 e^{x}}{2} - \frac {5 e^{- x}}{2} \]