Internal
problem
ID
[17418]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
3.
Systems
of
two
first
order
equations.
Section
3.4
(Complex
Eigenvalues).
Problems
at
page
177
Problem
number
:
8
Date
solved
:
Thursday, March 13, 2025 at 10:08:01 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x(t),t) = 2*x(t)-5*y(t), diff(y(t),t) = x(t)-2*y(t)]; ic:=x(0) = 3y(0) = 2; dsolve([ode,ic]);
ode={D[x[t],t]==2*x[t]-5*y[t],D[y[t],t]==x[t]-2*y[t]}; ic={x[0]==3,y[0]==2}; DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") ode=[Eq(-2*x(t) + 5*y(t) + Derivative(x(t), t),0),Eq(-x(t) + 2*y(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t)],ics=ics)