76.24.7 problem 8

Internal problem ID [17806]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 6. Systems of First Order Linear Equations. Section 6.2 (Basic Theory of First Order Linear Systems). Problems at page 398
Problem number : 8
Date solved : Tuesday, January 28, 2025 at 11:03:16 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=x_{2} \left (t \right )+x_{3} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=x_{1} \left (t \right )+x_{3} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=x_{1} \left (t \right )+x_{2} \left (t \right ) \end{align*}

Solution by Maple

Time used: 0.247 (sec). Leaf size: 63

dsolve([diff(x__1(t),t)=x__2(t)+x__3(t),diff(x__2(t),t)=x__1(t)+x__3(t),diff(x__3(t),t)=x__1(t)+x__2(t)],singsol=all)
 
\begin{align*} x_{1} \left (t \right ) &= c_{2} {\mathrm e}^{-t}+c_{3} {\mathrm e}^{2 t} \\ x_{2} \left (t \right ) &= c_{2} {\mathrm e}^{-t}+c_{3} {\mathrm e}^{2 t}+{\mathrm e}^{-t} c_{1} \\ x_{3} \left (t \right ) &= -2 c_{2} {\mathrm e}^{-t}+c_{3} {\mathrm e}^{2 t}-{\mathrm e}^{-t} c_{1} \\ \end{align*}

Solution by Mathematica

Time used: 0.006 (sec). Leaf size: 124

DSolve[{D[x1[t],t]==x2[t]+x3[t],D[x2[t],t]==x1[t]+x3[t],D[x3[t],t]==x1[t]+x2[t]},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} \text {x1}(t)\to \frac {1}{3} e^{-t} \left (c_1 \left (e^{3 t}+2\right )+(c_2+c_3) \left (e^{3 t}-1\right )\right ) \\ \text {x2}(t)\to \frac {1}{3} e^{-t} \left (c_1 \left (e^{3 t}-1\right )+c_2 \left (e^{3 t}+2\right )+c_3 \left (e^{3 t}-1\right )\right ) \\ \text {x3}(t)\to \frac {1}{3} e^{-t} \left (c_1 \left (e^{3 t}-1\right )+c_2 \left (e^{3 t}-1\right )+c_3 \left (e^{3 t}+2\right )\right ) \\ \end{align*}