76.8.20 problem 20

Internal problem ID [17430]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 3. Systems of two first order equations. Section 3.4 (Complex Eigenvalues). Problems at page 177
Problem number : 20
Date solved : Thursday, March 13, 2025 at 10:08:14 AM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=4 x \left (t \right )+a y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=8 x \left (t \right )-6 y \left (t \right ) \end{align*}

Maple. Time used: 0.095 (sec). Leaf size: 123
ode:=[diff(x(t),t) = 4*x(t)+a*y(t), diff(y(t),t) = 8*x(t)-6*y(t)]; 
dsolve(ode);
 
\begin{align*} x \left (t \right ) &= c_{1} {\mathrm e}^{\left (-1+\sqrt {8 a +25}\right ) t}+c_{2} {\mathrm e}^{-t \sqrt {8 a +25}-t} \\ y \left (t \right ) &= \frac {c_{1} {\mathrm e}^{\left (-1+\sqrt {8 a +25}\right ) t} \sqrt {8 a +25}-c_{2} {\mathrm e}^{-t \sqrt {8 a +25}-t} \sqrt {8 a +25}-5 c_{1} {\mathrm e}^{\left (-1+\sqrt {8 a +25}\right ) t}-5 c_{2} {\mathrm e}^{-t \sqrt {8 a +25}-t}}{a} \\ \end{align*}
Mathematica. Time used: 0.007 (sec). Leaf size: 188
ode={D[x[t],t]==4*x[t]+a*y[t],D[y[t],t]==8*x[t]-6*y[t]}; 
ic={}; 
DSolve[{ode,ic},{x[t],y[t]},t,IncludeSingularSolutions->True]
 
\begin{align*} x(t)\to \frac {e^{-\left (\left (\sqrt {8 a+25}+1\right ) t\right )} \left (c_1 \left (\left (\sqrt {8 a+25}+5\right ) e^{2 \sqrt {8 a+25} t}+\sqrt {8 a+25}-5\right )+a c_2 \left (e^{2 \sqrt {8 a+25} t}-1\right )\right )}{2 \sqrt {8 a+25}} \\ y(t)\to \frac {e^{-\left (\left (\sqrt {8 a+25}+1\right ) t\right )} \left (8 c_1 \left (e^{2 \sqrt {8 a+25} t}-1\right )+c_2 \left (\left (\sqrt {8 a+25}-5\right ) e^{2 \sqrt {8 a+25} t}+\sqrt {8 a+25}+5\right )\right )}{2 \sqrt {8 a+25}} \\ \end{align*}
Sympy. Time used: 0.202 (sec). Leaf size: 88
from sympy import * 
t = symbols("t") 
a = symbols("a") 
x = Function("x") 
y = Function("y") 
ode=[Eq(-a*y(t) - 4*x(t) + Derivative(x(t), t),0),Eq(-8*x(t) + 6*y(t) + Derivative(y(t), t),0)] 
ics = {} 
dsolve(ode,func=[x(t),y(t)],ics=ics)
 
\[ \left [ x{\left (t \right )} = - \frac {C_{1} \left (\sqrt {8 a + 25} - 5\right ) e^{- t \left (\sqrt {8 a + 25} + 1\right )}}{8} + \frac {C_{2} \left (\sqrt {8 a + 25} + 5\right ) e^{t \left (\sqrt {8 a + 25} - 1\right )}}{8}, \ y{\left (t \right )} = C_{1} e^{- t \left (\sqrt {8 a + 25} + 1\right )} + C_{2} e^{t \left (\sqrt {8 a + 25} - 1\right )}\right ] \]