Internal
problem
ID
[17831]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.3
(Homogeneous
Linear
Systems
with
Constant
Coefficients).
Problems
at
page
408
Problem
number
:
22
Date
solved
:
Tuesday, January 28, 2025 at 11:03:34 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.168 (sec). Leaf size: 101
dsolve([diff(x__1(t),t)=-5*x__1(t)-2*x__2(t)-1*x__3(t)+2*x__4(t)+3*x__5(t),diff(x__2(t),t)=0*x__1(t)-3*x__2(t)-0*x__3(t)+0*x__4(t)+0*x__5(t),diff(x__3(t),t)=1*x__1(t)-0*x__2(t)-1*x__3(t)+0*x__4(t)-1*x__5(t),diff(x__4(t),t)=2*x__1(t)+1*x__2(t)-0*x__3(t)-4*x__4(t)-2*x__5(t),diff(x__5(t),t)=-3*x__1(t)-2*x__2(t)-1*x__3(t)+2*x__4(t)+1*x__5(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.010 (sec). Leaf size: 245
DSolve[{D[x1[t],t]==-5*x1[t]-2*x2[t]-1*x3[t]+2*x4[t]+3*x5[t],D[x2[t],t]==0*x1[t]-3*x2[t]-0*x3[t]+0*x4[t]+0*x5[t],D[x3[t],t]==1*x1[t]-0*x2[t]-1*x3[t]+0*x4[t]-x5[t],D[x4[t],t]==2*x1[t]+1*x2[t]-0*x3[t]-4*x4[t]-2*x5[t],D[x5[t],t]==-3*x1[t]-2*x2[t]-1*x3[t]+2*x4[t]+1*x5[t]},{x1[t],x2[t],x3[t],x4[t],x5[t]},t,IncludeSingularSolutions -> True]