Internal
problem
ID
[17843]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.4
(Nondefective
Matrices
with
Complex
Eigenvalues).
Problems
at
page
419
Problem
number
:
15
Date
solved
:
Tuesday, January 28, 2025 at 11:03:52 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.140 (sec). Leaf size: 121
dsolve([diff(x__1(t),t)=-3*x__1(t)+6*x__2(t)+2*x__3(t)-2*x__4(t),diff(x__2(t),t)=2*x__1(t)-3*x__2(t)-6*x__3(t)+2*x__4(t),diff(x__3(t),t)=-4*x__1(t)+8*x__2(t)+3*x__3(t)-4*x__4(t),diff(x__4(t),t)=2*x__1(t)-2*x__2(t)-6*x__3(t)+1*x__4(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.019 (sec). Leaf size: 247
DSolve[{D[x1[t],t]==-3*x1[t]+6*x2[t]+2*x3[t]-2*x4[t],D[x2[t],t]==2*x1[t]-3*x2[t]-6*x3[t]+2*x4[t],D[x3[t],t]==-4*x1[t]+8*x2[t]+3*x3[t]-4*x4[t],D[x4[t],t]==2*x1[t]-2*x2[t]-6*x3[t]+1*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]