Internal
problem
ID
[17476]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.1
(Definitions
and
examples).
Problems
at
page
214
Problem
number
:
25
Date
solved
:
Thursday, March 13, 2025 at 10:09:24 AM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(t),t),t)+3*diff(y(t),t)+4*y(t) = 0; ic:=y(0) = 1, D(y)(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],{t,2}]+3*D[y[t],t]+4*y[t]==0; ic={y[0]==1,Derivative[1][y][0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) + 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} dsolve(ode,func=y(t),ics=ics)