Internal
problem
ID
[17884]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.7
(Defective
Matrices).
Problems
at
page
444
Problem
number
:
8
Date
solved
:
Tuesday, January 28, 2025 at 11:09:42 AM
CAS
classification
:
system_of_ODEs
✓ Solution by Maple
Time used: 0.131 (sec). Leaf size: 110
dsolve([diff(x__1(t),t)=1*x__1(t)-1*x__2(t)-2*x__3(t)+3*x__4(t),diff(x__2(t),t)=2*x__1(t)-3/2*x__2(t)-1*x__3(t)+7/2*x__4(t),diff(x__3(t),t)=-1*x__1(t)+1/2*x__2(t)-0*x__3(t)-3/2*x__4(t),diff(x__4(t),t)=-2*x__1(t)+3/2*x__2(t)+3*x__3(t)-7/2*x__4(t)],singsol=all)
✓ Solution by Mathematica
Time used: 0.005 (sec). Leaf size: 206
DSolve[{D[x1[t],t]==1*x1[t]-1*x2[t]-2*x3[t]+3*x4[t],D[x2[t],t]==2*x1[t]-3/2*x2[t]-1*x3[t]+7/2*x4[t],D[x3[t],t]==-1*x1[t]+1/2*x2[t]-0*x3[t]-3/2*x4[t],D[x4[t],t]==-2*x1[t]+3/2*x2[t]+3*x3[t]-7/2*x4[t]},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions -> True]