76.30.2 problem 2

Internal problem ID [17890]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 7. Nonlinear Differential Equations and Stability. Section 7.1 (Autonomous Systems and Stability). Problems at page 464
Problem number : 2
Date solved : Tuesday, January 28, 2025 at 08:28:11 PM
CAS classification : system_of_ODEs

\begin{align*} \frac {d}{d t}x \left (t \right )&=1+5 y \left (t \right )\\ \frac {d}{d t}y \left (t \right )&=1-6 x \left (t \right )^{2} \end{align*}

Solution by Maple

Time used: 0.076 (sec). Leaf size: 25

dsolve([diff(x(t),t)=1+5*y(t),diff(y(t),t)=1-6*x(t)^2],singsol=all)
 
\begin{align*} \left \{x \left (t \right ) &= -\frac {\operatorname {WeierstrassP}\left (t +c_{1} , 50, c_{2}\right )}{5}\right \} \\ \left \{y \left (t \right ) &= \frac {\frac {d}{d t}x \left (t \right )}{5}-\frac {1}{5}\right \} \\ \end{align*}

Solution by Mathematica

Time used: 0.574 (sec). Leaf size: 923

DSolve[{D[x[t],t]==1+5*y[t],D[y[t],t]==1-6*x[t]^2},{x[t],y[t]},t,IncludeSingularSolutions -> True]
 
\begin{align*} y(t)\to \frac {1}{5} \left (-1-\sqrt {-20 x(t)^3+10 x(t)+1+10 c_1}\right ) \\ \text {Solve}\left [\frac {2 \sqrt {\frac {x(t)-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,1\right ]}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,1\right ]}} \sqrt {\frac {x(t)-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,2\right ]}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,2\right ]}} \left (x(t)-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,3\right ]-x(t)}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,3\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,2\right ]}}\right ),\frac {\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,2\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,3\right ]}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,1\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,3\right ]}\right )}{\sqrt {-20 x(t)^3+10 x(t)+1+10 c_1} \sqrt {\frac {x(t)-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,2\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]}}}&=-t+c_2,x(t)\right ] \\ y(t)\to \frac {1}{5} \left (-1+\sqrt {-20 x(t)^3+10 x(t)+1+10 c_1}\right ) \\ \text {Solve}\left [\frac {2 \sqrt {\frac {x(t)-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,1\right ]}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,1\right ]}} \sqrt {\frac {x(t)-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,2\right ]}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,2\right ]}} \left (x(t)-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,3\right ]-x(t)}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,3\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,2\right ]}}\right ),\frac {\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,2\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,3\right ]}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,1\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-10 c_1-1\&,3\right ]}\right )}{\sqrt {-20 x(t)^3+10 x(t)+1+10 c_1} \sqrt {\frac {x(t)-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]}{\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,2\right ]-\text {Root}\left [20 \text {$\#$1}^3-10 \text {$\#$1}-1-10 c_1\&,3\right ]}}}&=t+c_2,x(t)\right ] \\ \end{align*}