77.1.15 problem 29 (page 32)

Internal problem ID [17905]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 29 (page 32)
Date solved : Tuesday, January 28, 2025 at 11:11:57 AM
CAS classification : [[_homogeneous, `class C`], _dAlembert]

\begin{align*} \left (x +y\right )^{2} y^{\prime }&=a^{2} \end{align*}

Solution by Maple

Time used: 0.118 (sec). Leaf size: 24

dsolve((x+y(x))^2*diff(y(x),x)=a^2,y(x), singsol=all)
 
\[ y = a \operatorname {RootOf}\left (\tan \left (\textit {\_Z} \right ) a -a \textit {\_Z} +c_{1} -x \right )-c_{1} \]

Solution by Mathematica

Time used: 0.102 (sec). Leaf size: 21

DSolve[(x+y[x])^2*D[y[x],x]==a^2,y[x],x,IncludeSingularSolutions -> True]
 
\[ \text {Solve}\left [y(x)-a \arctan \left (\frac {y(x)+x}{a}\right )=c_1,y(x)\right ] \]