77.1.21 problem 37 (page 40)

Internal problem ID [17911]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 37 (page 40)
Date solved : Tuesday, January 28, 2025 at 11:12:13 AM
CAS classification : [_Bernoulli]

\begin{align*} x y^{\prime }+y&=x y^{2} \ln \left (x \right ) \end{align*}

Solution by Maple

Time used: 0.005 (sec). Leaf size: 19

dsolve(x*diff(y(x),x)+y(x)=x*y(x)^2*ln(x),y(x), singsol=all)
 
\[ y = -\frac {2}{\left (\ln \left (x \right )^{2}-2 c_{1} \right ) x} \]

Solution by Mathematica

Time used: 0.146 (sec). Leaf size: 27

DSolve[x*D[y[x],x]+y[x]==x*y[x]^2*Log[x],y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {2}{-x \log ^2(x)+2 c_1 x} \\ y(x)\to 0 \\ \end{align*}