77.1.26 problem 42 (page 55)

Internal problem ID [17916]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 42 (page 55)
Date solved : Tuesday, January 28, 2025 at 11:12:24 AM
CAS classification : [[_homogeneous, `class G`], _rational, _Riccati]

\begin{align*} y^{\prime }+y^{2}+\frac {y}{x}-\frac {4}{x^{2}}&=0 \end{align*}

Solution by Maple

Time used: 20.542 (sec). Leaf size: 26

dsolve(diff(y(x),x)+y(x)^2+y(x)/x-4/x^2=0,y(x), singsol=all)
 
\[ y = \frac {-2 x^{4}-2 c_{1}}{x \left (-x^{4}+c_{1} \right )} \]

Solution by Mathematica

Time used: 0.858 (sec). Leaf size: 63

DSolve[D[y[x],x]+y[x]^2+y[x]/x-4/x^2==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \frac {2 i \tan (c_1-2 i \log (x))}{x} \\ y(x)\to \frac {2 \left (x^4-e^{2 i \text {Interval}[\{0,\pi \}]}\right )}{x \left (x^4+e^{2 i \text {Interval}[\{0,\pi \}]}\right )} \\ \end{align*}