77.1.36 problem 53 (page 96)
Internal
problem
ID
[17926]
Book
:
V.V.
Stepanov,
A
course
of
differential
equations
(in
Russian),
GIFML.
Moscow
(1958)
Section
:
All
content
Problem
number
:
53
(page
96)
Date
solved
:
Tuesday, January 28, 2025 at 11:12:53 AM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, _dAlembert]
\begin{align*} \frac {2 x}{y^{3}}+\frac {\left (y^{2}-3 x^{2}\right ) y^{\prime }}{y^{4}}&=0 \end{align*}
✓ Solution by Maple
Time used: 0.095 (sec). Leaf size: 313
dsolve(2*x/y(x)^3+(y(x)^2-3*x^2)/y(x)^4*diff(y(x),x)=0,y(x), singsol=all)
\begin{align*}
y &= \frac {1+\frac {\left (12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} -108 c_{1}^{2} x^{2}+8\right )^{{1}/{3}}}{2}+\frac {2}{\left (12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} -108 c_{1}^{2} x^{2}+8\right )^{{1}/{3}}}}{3 c_{1}} \\
y &= -\frac {\left (1+i \sqrt {3}\right ) \left (12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} -108 c_{1}^{2} x^{2}+8\right )^{{2}/{3}}-4 i \sqrt {3}-4 \left (12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} -108 c_{1}^{2} x^{2}+8\right )^{{1}/{3}}+4}{12 \left (12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} -108 c_{1}^{2} x^{2}+8\right )^{{1}/{3}} c_{1}} \\
y &= \frac {\left (i \sqrt {3}-1\right ) \left (12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} -108 c_{1}^{2} x^{2}+8\right )^{{2}/{3}}-4 i \sqrt {3}+4 \left (12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} -108 c_{1}^{2} x^{2}+8\right )^{{1}/{3}}-4}{12 \left (12 \sqrt {3}\, x \sqrt {27 c_{1}^{2} x^{2}-4}\, c_{1} -108 c_{1}^{2} x^{2}+8\right )^{{1}/{3}} c_{1}} \\
\end{align*}
✓ Solution by Mathematica
Time used: 60.177 (sec). Leaf size: 458
DSolve[2*x/y[x]^3+(y[x]^2-3*x^2)/y[x]^4*D[y[x],x]==0,y[x],x,IncludeSingularSolutions -> True]
\begin{align*}
y(x)\to \frac {1}{3} \left (\frac {\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{\sqrt [3]{2}}+\frac {\sqrt [3]{2} e^{2 c_1}}{\sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-e^{c_1}\right ) \\
y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}-\frac {i \left (\sqrt {3}-i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\
y(x)\to -\frac {i \left (\sqrt {3}-i\right ) \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}{6 \sqrt [3]{2}}+\frac {i \left (\sqrt {3}+i\right ) e^{2 c_1}}{3\ 2^{2/3} \sqrt [3]{27 e^{c_1} x^2+3 \sqrt {81 e^{2 c_1} x^4-12 e^{4 c_1} x^2}-2 e^{3 c_1}}}-\frac {e^{c_1}}{3} \\
\end{align*}