Internal
problem
ID
[17948]
Book
:
V.V.
Stepanov,
A
course
of
differential
equations
(in
Russian),
GIFML.
Moscow
(1958)
Section
:
All
content
Problem
number
:
77
(page
120)
Date
solved
:
Tuesday, January 28, 2025 at 11:14:52 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
\begin{align*} y&=\frac {k \left (x +y^{\prime } y\right )}{\sqrt {{y^{\prime }}^{2}+1}} \end{align*}
Time used: 1.462 (sec). Leaf size: 378
\begin{align*}
-{\mathrm e}^{k \left (\int _{}^{\frac {-k^{2} x +\sqrt {\left (k^{2}-1\right ) y^{2}+x^{2} k^{2}}}{\left (k^{2}-1\right ) y}}\frac {k \sqrt {\textit {\_a}^{2}+1}-\textit {\_a}}{\sqrt {\textit {\_a}^{2}+1}\, \left (-\sqrt {\textit {\_a}^{2}+1}\, \textit {\_a} +k \left (\textit {\_a}^{2}+1\right )\right ) \left (k \textit {\_a} -\sqrt {\textit {\_a}^{2}+1}\right )}d \textit {\_a} \right )} c_{1} +x &= 0 \\
-{\mathrm e}^{k \left (\int _{}^{\frac {-k^{2} x -\sqrt {\left (k^{2}-1\right ) y^{2}+x^{2} k^{2}}}{y \left (k^{2}-1\right )}}\frac {k \sqrt {\textit {\_a}^{2}+1}-\textit {\_a}}{\sqrt {\textit {\_a}^{2}+1}\, \left (-\sqrt {\textit {\_a}^{2}+1}\, \textit {\_a} +k \left (\textit {\_a}^{2}+1\right )\right ) \left (k \textit {\_a} -\sqrt {\textit {\_a}^{2}+1}\right )}d \textit {\_a} \right )} c_{1} +x &= 0 \\
y &= \operatorname {RootOf}\left (-\ln \left (x \right )+\int _{}^{\textit {\_Z}}-\frac {\left (\textit {\_a}^{2} k^{2}-\textit {\_a}^{2}+k^{2}-\sqrt {\textit {\_a}^{2} k^{2}-\textit {\_a}^{2}+k^{2}}\right ) \textit {\_a}}{\left (\textit {\_a}^{2}+1\right ) \left (\textit {\_a}^{2} k^{2}-\textit {\_a}^{2}+k^{2}\right )}d \textit {\_a} +c_{1} \right ) x \\
y &= \operatorname {RootOf}\left (-\ln \left (x \right )-\int _{}^{\textit {\_Z}}\frac {\left (\textit {\_a}^{2} k^{2}-\textit {\_a}^{2}+k^{2}+\sqrt {\textit {\_a}^{2} k^{2}-\textit {\_a}^{2}+k^{2}}\right ) \textit {\_a}}{\left (\textit {\_a}^{2}+1\right ) \left (\textit {\_a}^{2} k^{2}-\textit {\_a}^{2}+k^{2}\right )}d \textit {\_a} +c_{1} \right ) x \\
\end{align*}
Time used: 0.000 (sec). Leaf size: 0
Timed out