Internal
problem
ID
[17954]
Book
:
V.V.
Stepanov,
A
course
of
differential
equations
(in
Russian),
GIFML.
Moscow
(1958)
Section
:
All
content
Problem
number
:
83
(page
120)
Date
solved
:
Tuesday, January 28, 2025 at 11:18:14 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _dAlembert]
Time used: 0.153 (sec). Leaf size: 77
\begin{align*}
-\frac {c_{1}}{\sqrt {-x -\sqrt {x^{2}-2 y}}}+\frac {2 x}{3}-\frac {\sqrt {x^{2}-2 y}}{3} &= 0 \\
-\frac {c_{1}}{\sqrt {-x +\sqrt {x^{2}-2 y}}}+\frac {2 x}{3}+\frac {\sqrt {x^{2}-2 y}}{3} &= 0 \\
\end{align*}
Time used: 60.167 (sec). Leaf size: 1000
\begin{align*}
y(x)\to \frac {\left (x^2-\sqrt [3]{x^6+10 e^{3 c_1} x^3+2 \sqrt {e^{3 c_1} \left (2 x^3+e^{3 c_1}\right ){}^3}-2 e^{6 c_1}}\right ){}^2-4 e^{3 c_1} x}{2 \sqrt [3]{x^6+10 e^{3 c_1} x^3+2 \sqrt {e^{3 c_1} \left (2 x^3+e^{3 c_1}\right ){}^3}-2 e^{6 c_1}}} \\
y(x)\to \frac {1}{4} \left (-4 x^2+\frac {\left (1+i \sqrt {3}\right ) x \left (-x^3+4 e^{3 c_1}\right )}{\sqrt [3]{x^6+10 e^{3 c_1} x^3+2 \sqrt {e^{3 c_1} \left (2 x^3+e^{3 c_1}\right ){}^3}-2 e^{6 c_1}}}+i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6+10 e^{3 c_1} x^3+2 \sqrt {e^{3 c_1} \left (2 x^3+e^{3 c_1}\right ){}^3}-2 e^{6 c_1}}\right ) \\
y(x)\to -x^2+\frac {i \left (\sqrt {3}+i\right ) x \left (x^3-4 e^{3 c_1}\right )}{4 \sqrt [3]{x^6+10 e^{3 c_1} x^3+2 \sqrt {e^{3 c_1} \left (2 x^3+e^{3 c_1}\right ){}^3}-2 e^{6 c_1}}}-\frac {1}{4} \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6+10 e^{3 c_1} x^3+2 \sqrt {e^{3 c_1} \left (2 x^3+e^{3 c_1}\right ){}^3}-2 e^{6 c_1}} \\
y(x)\to \frac {2 \sqrt [3]{2} x^4+\left (4 x^6+20 e^{3 c_1} x^3+2 \sqrt {e^{3 c_1} \left (4 x^3+e^{3 c_1}\right ){}^3}-2 e^{6 c_1}\right ){}^{2/3}-4 x^2 \sqrt [3]{2 x^6+10 e^{3 c_1} x^3+\sqrt {e^{3 c_1} \left (4 x^3+e^{3 c_1}\right ){}^3}-e^{6 c_1}}-4 \sqrt [3]{2} e^{3 c_1} x}{4 \sqrt [3]{2 x^6+10 e^{3 c_1} x^3+\sqrt {e^{3 c_1} \left (4 x^3+e^{3 c_1}\right ){}^3}-e^{6 c_1}}} \\
y(x)\to -x^2+\frac {\left (1+i \sqrt {3}\right ) x \left (-x^3+2 e^{3 c_1}\right )}{4 \sqrt [3]{x^6+5 e^{3 c_1} x^3+\frac {1}{2} \sqrt {e^{3 c_1} \left (4 x^3+e^{3 c_1}\right ){}^3}-\frac {e^{6 c_1}}{2}}}+\frac {1}{4} i \left (\sqrt {3}+i\right ) \sqrt [3]{x^6+5 e^{3 c_1} x^3+\frac {1}{2} \sqrt {e^{3 c_1} \left (4 x^3+e^{3 c_1}\right ){}^3}-\frac {e^{6 c_1}}{2}} \\
y(x)\to -x^2+\frac {i \left (\sqrt {3}+i\right ) x \left (x^3-2 e^{3 c_1}\right )}{4 \sqrt [3]{x^6+5 e^{3 c_1} x^3+\frac {1}{2} \sqrt {e^{3 c_1} \left (4 x^3+e^{3 c_1}\right ){}^3}-\frac {e^{6 c_1}}{2}}}-\frac {1}{4} \left (1+i \sqrt {3}\right ) \sqrt [3]{x^6+5 e^{3 c_1} x^3+\frac {1}{2} \sqrt {e^{3 c_1} \left (4 x^3+e^{3 c_1}\right ){}^3}-\frac {e^{6 c_1}}{2}} \\
\end{align*}