Internal
problem
ID
[17963]
Book
:
V.V.
Stepanov,
A
course
of
differential
equations
(in
Russian),
GIFML.
Moscow
(1958)
Section
:
All
content
Problem
number
:
92
(page
135)
Date
solved
:
Tuesday, January 28, 2025 at 11:18:37 AM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
Time used: 0.046 (sec). Leaf size: 31
\begin{align*}
y &= -x \\
y &= c_{1} +2 \sqrt {c_{1} x} \\
y &= c_{1} -2 \sqrt {c_{1} x} \\
\end{align*}
Time used: 60.096 (sec). Leaf size: 1178
\begin{align*}
y(x)\to \frac {\sqrt [3]{2} \sqrt {x} \left (x^{3/2}-2 e^{\frac {3 c_1}{2}}\right )}{\sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}+\frac {\sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}{\sqrt [3]{2}}+2 x \\
y(x)\to \frac {\left (1+i \sqrt {3}\right ) \sqrt {x} \left (-x^{3/2}+2 e^{\frac {3 c_1}{2}}\right )}{2^{2/3} \sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}+\frac {i \left (\sqrt {3}+i\right ) \sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}{2 \sqrt [3]{2}}+2 x \\
y(x)\to \frac {i \left (\sqrt {3}+i\right ) \sqrt {x} \left (x^{3/2}-2 e^{\frac {3 c_1}{2}}\right )}{2^{2/3} \sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-10 e^{\frac {3 c_1}{2}} x^{3/2}+\sqrt {e^{\frac {3 c_1}{2}} \left (4 x^{3/2}+e^{\frac {3 c_1}{2}}\right ){}^3}-2 x^3+e^{3 c_1}}}{2 \sqrt [3]{2}}+2 x \\
y(x)\to \frac {\sqrt [3]{2} e^{\frac {3 c_1}{2}} \sqrt {x} \left (2+e^{\frac {3 c_1}{2}} x^{3/2}\right )}{\sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}}+\frac {e^{-3 c_1} \sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}}{\sqrt [3]{2}}+2 x \\
y(x)\to \frac {1}{4} \left (-\frac {2 \sqrt [3]{2} \left (1+i \sqrt {3}\right ) e^{\frac {3 c_1}{2}} \sqrt {x} \left (2+e^{\frac {3 c_1}{2}} x^{3/2}\right )}{\sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}}+i 2^{2/3} \left (\sqrt {3}+i\right ) e^{-3 c_1} \sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}+8 x\right ) \\
y(x)\to \frac {1}{4} \left (\frac {2 i \sqrt [3]{2} \left (\sqrt {3}+i\right ) e^{\frac {3 c_1}{2}} \sqrt {x} \left (2+e^{\frac {3 c_1}{2}} x^{3/2}\right )}{\sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}}-2^{2/3} \left (1+i \sqrt {3}\right ) e^{-3 c_1} \sqrt [3]{10 e^{\frac {15 c_1}{2}} x^{3/2}+\sqrt {-e^{12 c_1} \left (-1+4 e^{\frac {3 c_1}{2}} x^{3/2}\right ){}^3}-2 e^{9 c_1} x^3+e^{6 c_1}}+8 x\right ) \\
\end{align*}