Internal
problem
ID
[17587]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.5
(Nonhomogeneous
Equations,
Method
of
Undetermined
Coefficients).
Problems
at
page
260
Problem
number
:
26
Date
solved
:
Thursday, March 13, 2025 at 10:16:12 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)+2*diff(y(t),t)+2*y(t) = 3*exp(-t)+2*exp(-t)*cos(t)+4*exp(-t)*t^2*sin(t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+2*D[y[t],t]+2*y[t]==3*Exp[-t]+2*Exp[-t]*Cos[t]+4*Exp[-t]*t^2*Sin[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-4*t**2*exp(-t)*sin(t) + 2*y(t) + 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 2*exp(-t)*cos(t) - 3*exp(-t),0) ics = {} dsolve(ode,func=y(t),ics=ics)