8.7.19 problem 35

Internal problem ID [825]
Book : Differential equations and linear algebra, 3rd ed., Edwards and Penney
Section : Section 5.1, second order linear equations. Page 299
Problem number : 35
Date solved : Tuesday, March 04, 2025 at 11:52:52 AM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }+5 y^{\prime }&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 12
ode:=diff(diff(y(x),x),x)+5*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{-5 x} \]
Mathematica. Time used: 0.009 (sec). Leaf size: 19
ode=D[y[x],{x,2}]+5*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2-\frac {1}{5} c_1 e^{-5 x} \]
Sympy. Time used: 0.135 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{- 5 x} \]