77.1.84 problem 111 (page 172)

Internal problem ID [17974]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 111 (page 172)
Date solved : Tuesday, January 28, 2025 at 11:19:11 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} 2 \left (2 a -y\right ) y^{\prime \prime }&={y^{\prime }}^{2}+1 \end{align*}

Solution by Maple

Time used: 0.195 (sec). Leaf size: 139

dsolve(2*(2*a-y(x))*diff(y(x),x$2)= 1+diff(y(x),x)^2,y(x), singsol=all)
 
\begin{align*} -\sqrt {-\left (2 a -y\right ) \left (-y+c_{1} +2 a \right )}+\frac {\arctan \left (\frac {2 y-4 a -c_{1}}{2 \sqrt {-\left (2 a -y\right ) \left (-y+c_{1} +2 a \right )}}\right ) c_{1}}{2}-x -c_{2} &= 0 \\ \sqrt {-\left (2 a -y\right ) \left (-y+c_{1} +2 a \right )}-\frac {\arctan \left (\frac {2 y-4 a -c_{1}}{2 \sqrt {-\left (2 a -y\right ) \left (-y+c_{1} +2 a \right )}}\right ) c_{1}}{2}-x -c_{2} &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 1.215 (sec). Leaf size: 520

DSolve[2*(2*a-y[x])*D[y[x],{x,2}]== 1+D[y[x],x]^2,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-\frac {1}{2} e^{2 c_1} \arctan \left (\frac {\sqrt {2 \text {$\#$1}-4 a+e^{2 c_1}}}{\sqrt {4 a-2 \text {$\#$1}}}\right )-\sqrt {a-\frac {\text {$\#$1}}{2}} \sqrt {2 \text {$\#$1}-4 a+e^{2 c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {1}{2} e^{2 c_1} \arctan \left (\frac {\sqrt {2 \text {$\#$1}-4 a+e^{2 c_1}}}{\sqrt {4 a-2 \text {$\#$1}}}\right )+\sqrt {a-\frac {\text {$\#$1}}{2}} \sqrt {2 \text {$\#$1}-4 a+e^{2 c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {1}{2} e^{2 (-c_1)} \arctan \left (\frac {\sqrt {2 \text {$\#$1}-4 a+e^{2 (-c_1)}}}{\sqrt {4 a-2 \text {$\#$1}}}\right )-\sqrt {a-\frac {\text {$\#$1}}{2}} \sqrt {2 \text {$\#$1}-4 a+e^{2 (-c_1)}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {1}{2} e^{2 (-c_1)} \arctan \left (\frac {\sqrt {2 \text {$\#$1}-4 a+e^{2 (-c_1)}}}{\sqrt {4 a-2 \text {$\#$1}}}\right )+\sqrt {a-\frac {\text {$\#$1}}{2}} \sqrt {2 \text {$\#$1}-4 a+e^{2 (-c_1)}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-\frac {1}{2} e^{2 c_1} \arctan \left (\frac {\sqrt {2 \text {$\#$1}-4 a+e^{2 c_1}}}{\sqrt {4 a-2 \text {$\#$1}}}\right )-\sqrt {a-\frac {\text {$\#$1}}{2}} \sqrt {2 \text {$\#$1}-4 a+e^{2 c_1}}\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [\frac {1}{2} e^{2 c_1} \arctan \left (\frac {\sqrt {2 \text {$\#$1}-4 a+e^{2 c_1}}}{\sqrt {4 a-2 \text {$\#$1}}}\right )+\sqrt {a-\frac {\text {$\#$1}}{2}} \sqrt {2 \text {$\#$1}-4 a+e^{2 c_1}}\&\right ][x+c_2] \\ \end{align*}