Internal
problem
ID
[17596]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
4.
Second
order
linear
equations.
Section
4.5
(Nonhomogeneous
Equations,
Method
of
Undetermined
Coefficients).
Problems
at
page
260
Problem
number
:
35
Date
solved
:
Thursday, March 13, 2025 at 10:37:32 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+x*diff(y(x),x)+4*y(x) = sin(ln(x)); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+x*D[y[x],x]+4*y[x]==Sin[Log[x]]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*Derivative(y(x), (x, 2)) + x*Derivative(y(x), x) + 4*y(x) - sin(log(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)