77.1.95 problem 122 (page 179)

Internal problem ID [17985]
Book : V.V. Stepanov, A course of differential equations (in Russian), GIFML. Moscow (1958)
Section : All content
Problem number : 122 (page 179)
Date solved : Tuesday, January 28, 2025 at 11:19:27 AM
CAS classification : [[_2nd_order, _missing_x], [_2nd_order, _reducible, _mu_x_y1]]

\begin{align*} y y^{\prime \prime }-{y^{\prime }}^{2}-{y^{\prime }}^{4}&=0 \end{align*}

Solution by Maple

Time used: 0.185 (sec). Leaf size: 105

dsolve(y(x)*diff(y(x),x$2)-diff(y(x),x)^2-diff(y(x),x)^4=0,y(x), singsol=all)
 
\begin{align*} y &= 0 \\ c_{1} \ln \left (2\right )+c_{1} \ln \left (\frac {c_{1} \left (\sqrt {c_{1}^{2}-y^{2}}+c_{1} \right )}{y}\right )-\sqrt {c_{1}^{2}-y^{2}}-c_{2} -x &= 0 \\ -c_{1} \ln \left (2\right )-c_{1} \ln \left (\frac {c_{1} \left (\sqrt {c_{1}^{2}-y^{2}}+c_{1} \right )}{y}\right )+\sqrt {c_{1}^{2}-y^{2}}-c_{2} -x &= 0 \\ \end{align*}

Solution by Mathematica

Time used: 0.858 (sec). Leaf size: 361

DSolve[y[x]*D[y[x],{x,2}]-D[y[x],x]^2-D[y[x],x]^4==0,y[x],x,IncludeSingularSolutions -> True]
 
\begin{align*} y(x)\to \text {InverseFunction}\left [-i e^{-c_1} \left (\sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}-\arctan \left (\sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}\right )\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [i e^{-c_1} \left (\sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}-\arctan \left (\sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}\right )\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-i e^{-(-c_1)} \left (\sqrt {-1+\text {$\#$1}^2 e^{2 (-c_1)}}-\arctan \left (\sqrt {-1+\text {$\#$1}^2 e^{2 (-c_1)}}\right )\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [i e^{-(-c_1)} \left (\sqrt {-1+\text {$\#$1}^2 e^{2 (-c_1)}}-\arctan \left (\sqrt {-1+\text {$\#$1}^2 e^{2 (-c_1)}}\right )\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [-i e^{-c_1} \left (\sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}-\arctan \left (\sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}\right )\right )\&\right ][x+c_2] \\ y(x)\to \text {InverseFunction}\left [i e^{-c_1} \left (\sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}-\arctan \left (\sqrt {-1+\text {$\#$1}^2 e^{2 c_1}}\right )\right )\&\right ][x+c_2] \\ \end{align*}