Internal
problem
ID
[1210]
Book
:
Elementary
differential
equations
and
boundary
value
problems,
10th
ed.,
Boyce
and
DiPrima
Section
:
Section
2.6.
Page
100
Problem
number
:
25
Date
solved
:
Monday, January 27, 2025 at 04:45:19 AM
CAS
classification
:
[[_homogeneous, `class D`], _rational]
\begin{align*} 2 y x +3 x^{2} y+y^{3}+\left (x^{2}+y^{2}\right ) y^{\prime }&=0 \end{align*}
Time used: 0.026 (sec). Leaf size: 293
\begin{align*}
y &= -\frac {2^{{1}/{3}} \left (x^{2} {\mathrm e}^{6 x} c_1^{2}-\frac {2^{{1}/{3}} {\left (\left (1+\sqrt {4 x^{6} {\mathrm e}^{6 x} c_1^{2}+1}\right ) {\mathrm e}^{6 x} c_1^{2}\right )}^{{2}/{3}}}{2}\right ) {\mathrm e}^{-3 x}}{{\left (\left (1+\sqrt {4 x^{6} {\mathrm e}^{6 x} c_1^{2}+1}\right ) {\mathrm e}^{6 x} c_1^{2}\right )}^{{1}/{3}} c_1} \\
y &= -\frac {2^{{1}/{3}} {\mathrm e}^{-3 x} \left (2 x^{2} \left (i \sqrt {3}-1\right ) {\mathrm e}^{6 x} c_1^{2}+2^{{1}/{3}} \left (1+i \sqrt {3}\right ) {\left (\left (1+\sqrt {4 x^{6} {\mathrm e}^{6 x} c_1^{2}+1}\right ) {\mathrm e}^{6 x} c_1^{2}\right )}^{{2}/{3}}\right )}{4 {\left (\left (1+\sqrt {4 x^{6} {\mathrm e}^{6 x} c_1^{2}+1}\right ) {\mathrm e}^{6 x} c_1^{2}\right )}^{{1}/{3}} c_1} \\
y &= \frac {2^{{1}/{3}} {\mathrm e}^{-3 x} \left (2 x^{2} \left (1+i \sqrt {3}\right ) {\mathrm e}^{6 x} c_1^{2}+2^{{1}/{3}} \left (i \sqrt {3}-1\right ) {\left (\left (1+\sqrt {4 x^{6} {\mathrm e}^{6 x} c_1^{2}+1}\right ) {\mathrm e}^{6 x} c_1^{2}\right )}^{{2}/{3}}\right )}{4 {\left (\left (1+\sqrt {4 x^{6} {\mathrm e}^{6 x} c_1^{2}+1}\right ) {\mathrm e}^{6 x} c_1^{2}\right )}^{{1}/{3}} c_1} \\
\end{align*}
Time used: 60.309 (sec). Leaf size: 383
\begin{align*}
y(x)\to \frac {e^{-3 x} \left (-2 e^{6 x} x^2+\sqrt [3]{2} \left (\sqrt {4 e^{18 x} x^6+e^{6 (2 x+c_1)}}+e^{6 x+3 c_1}\right ){}^{2/3}\right )}{2^{2/3} \sqrt [3]{\sqrt {4 e^{18 x} x^6+e^{6 (2 x+c_1)}}+e^{6 x+3 c_1}}} \\
y(x)\to \frac {i \left (\sqrt {3}+i\right ) e^{-3 x} \sqrt [3]{\sqrt {4 e^{18 x} x^6+e^{6 (2 x+c_1)}}+e^{6 x+3 c_1}}}{2 \sqrt [3]{2}}+\frac {\left (1+i \sqrt {3}\right ) e^{3 x} x^2}{2^{2/3} \sqrt [3]{\sqrt {4 e^{18 x} x^6+e^{6 (2 x+c_1)}}+e^{6 x+3 c_1}}} \\
y(x)\to \frac {\left (1-i \sqrt {3}\right ) e^{3 x} x^2}{2^{2/3} \sqrt [3]{\sqrt {4 e^{18 x} x^6+e^{6 (2 x+c_1)}}+e^{6 x+3 c_1}}}-\frac {\left (1+i \sqrt {3}\right ) e^{-3 x} \sqrt [3]{\sqrt {4 e^{18 x} x^6+e^{6 (2 x+c_1)}}+e^{6 x+3 c_1}}}{2 \sqrt [3]{2}} \\
\end{align*}