76.19.8 problem 8

Internal problem ID [17653]
Book : Differential equations. An introduction to modern methods and applications. James Brannan, William E. Boyce. Third edition. Wiley 2015
Section : Chapter 5. The Laplace transform. Section 5.4 (Solving differential equations with Laplace transform). Problems at page 327
Problem number : 8
Date solved : Thursday, March 13, 2025 at 10:46:00 AM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+2 y&=\cos \left (t \right ) \end{align*}

Using Laplace method With initial conditions

\begin{align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=0 \end{align*}

Maple. Time used: 10.743 (sec). Leaf size: 23
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+2*y(t) = cos(t); 
ic:=y(0) = 1, D(y)(0) = 0; 
dsolve([ode,ic],y(t),method='laplace');
 
\[ y = \frac {\cos \left (t \right ) \left (1+4 \,{\mathrm e}^{t}\right )}{5}-\frac {2 \sin \left (t \right ) \left (1+{\mathrm e}^{t}\right )}{5} \]
Mathematica. Time used: 0.069 (sec). Leaf size: 29
ode=D[y[t],{t,2}]-2*D[y[t],t]+2*y[t]==Cos[t]; 
ic={y[0]==1,Derivative[1][y][0] == 0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{5} \left (\left (4 e^t+1\right ) \cos (t)-2 \left (e^t+1\right ) \sin (t)\right ) \]
Sympy. Time used: 0.223 (sec). Leaf size: 31
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(2*y(t) - cos(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (- \frac {2 \sin {\left (t \right )}}{5} + \frac {4 \cos {\left (t \right )}}{5}\right ) e^{t} - \frac {2 \sin {\left (t \right )}}{5} + \frac {\cos {\left (t \right )}}{5} \]