Internal
problem
ID
[17659]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
5.
The
Laplace
transform.
Section
5.4
(Solving
differential
equations
with
Laplace
transform).
Problems
at
page
327
Problem
number
:
14
Date
solved
:
Thursday, March 13, 2025 at 10:46:05 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = -5*y__1(t)+y__2(t), diff(y__2(t),t) = -9*y__1(t)+5*y__2(t)]; ic:=y__1(0) = 1y__2(0) = 0; dsolve([ode,ic]);
ode={D[y1[t],t]==-5*y1[t]+y2[t],D[y2[t],t]==-9*y1[t]+5*y2[t]}; ic={y1[0]==1,y2[0]==0}; DSolve[{ode,ic},{y1[t],y2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(5*y__1(t) - y__2(t) + Derivative(y__1(t), t),0),Eq(9*y__1(t) - 5*y__2(t) + Derivative(y__2(t), t),0)] ics = {} dsolve(ode,func=[y__1(t),y__2(t)],ics=ics)