Internal
problem
ID
[17665]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
5.
The
Laplace
transform.
Section
5.4
(Solving
differential
equations
with
Laplace
transform).
Problems
at
page
327
Problem
number
:
20
Date
solved
:
Thursday, March 13, 2025 at 10:46:11 AM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(y__1(t),t) = -4*y__1(t)-y__2(t)+2*exp(t), diff(y__2(t),t) = y__1(t)-2*y__2(t)+sin(2*t)]; ic:=y__1(0) = 1y__2(0) = 2; dsolve([ode,ic]);
ode={D[y1[t],t]==-4*y1[t]-1*y2[t]+2*Exp[t],D[y2[t],t]==1*y1[t]-2*y2[t]+Sin[2*t]}; ic={y1[0]==1,y2[0]==2}; DSolve[{ode,ic},{y1[t],y2[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y__1 = Function("y__1") y__2 = Function("y__2") ode=[Eq(4*y__1(t) + y__2(t) - 2*exp(t) + Derivative(y__1(t), t),0),Eq(-y__1(t) + 2*y__2(t) - sin(2*t) + Derivative(y__2(t), t),0)] ics = {} dsolve(ode,func=[y__1(t),y__2(t)],ics=ics)