Internal
problem
ID
[17707]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
5.
The
Laplace
transform.
Section
5.8
(Convolution
Integrals
and
Their
Applications).
Problems
at
page
359
Problem
number
:
18
Date
solved
:
Thursday, March 13, 2025 at 10:47:47 AM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
Using Laplace method With initial conditions
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+4*y(t) = g(t); ic:=y(0) = 2, D(y)(0) = -3; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],{t,2}]+4*D[y[t],t]+4*y[t]==g[t]; ic={y[0]==2,Derivative[1][y][0] ==-3}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-g(t) + 4*y(t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 2, Subs(Derivative(y(t), t), t, 0): -3} dsolve(ode,func=y(t),ics=ics)