Internal
problem
ID
[18126]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
8
(Exact
Equations).
Problems
at
page
72
Problem
number
:
3
Date
solved
:
Tuesday, January 28, 2025 at 11:30:04 AM
CAS
classification
:
[_exact, _rational]
Time used: 0.004 (sec). Leaf size: 20
Time used: 60.162 (sec). Leaf size: 1210
\begin{align*}
y(x)\to -\frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}+\sqrt {\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}-\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}-\sqrt {-\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
y(x)\to \frac {\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}+\sqrt {-\frac {6 \sqrt {2} x}{\sqrt {\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}-\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}-\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}+\frac {\sqrt [3]{3} \left (x^4+4 c_1\right )}{\sqrt [3]{9 x^2+\sqrt {3} \sqrt {27 x^4+\left (x^4+4 c_1\right ){}^3}}}}}{\sqrt {2} \sqrt [3]{3}} \\
\end{align*}