Internal
problem
ID
[17748]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.3
(Homogeneous
Linear
Systems
with
Constant
Coefficients).
Problems
at
page
408
Problem
number
:
18
Date
solved
:
Thursday, March 13, 2025 at 10:48:22 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -5*x__1(t)+x__2(t)-4*x__3(t)-x__4(t), diff(x__2(t),t) = -3*x__2(t), diff(x__3(t),t) = x__1(t)-x__2(t)+x__4(t), diff(x__4(t),t) = 2*x__1(t)-x__2(t)+2*x__3(t)-2*x__4(t)]; dsolve(ode);
ode={D[x1[t],t]==-5*x1[t]+1*x2[t]-4*x3[t]-1*x4[t],D[x2[t],t]==0*x1[t]-3*x2[t]+0*x3[t]-0*x4[t],D[x3[t],t]==1*x1[t]-1*x2[t]-0*x3[t]+1*x4[t],D[x4[t],t]==2*x1[t]-1*x2[t]+2*x3[t]-2*x4[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") x__4 = Function("x__4") ode=[Eq(5*x__1(t) - x__2(t) + 4*x__3(t) + x__4(t) + Derivative(x__1(t), t),0),Eq(3*x__2(t) + Derivative(x__2(t), t),0),Eq(-x__1(t) + x__2(t) - x__4(t) + Derivative(x__3(t), t),0),Eq(-2*x__1(t) + x__2(t) - 2*x__3(t) + 2*x__4(t) + Derivative(x__4(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)