Internal
problem
ID
[17758]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.4
(Nondefective
Matrices
with
Complex
Eigenvalues).
Problems
at
page
419
Problem
number
:
5
Date
solved
:
Thursday, March 13, 2025 at 10:48:38 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = -7*x__1(t)+6*x__2(t)-6*x__3(t), diff(x__2(t),t) = -9*x__1(t)+5*x__2(t)-9*x__3(t), diff(x__3(t),t) = -x__2(t)-x__3(t)]; dsolve(ode);
ode={D[x1[t],t]==-7*x1[t]+6*x2[t]-6*x3[t],D[x2[t],t]==-9*x1[t]+5*x2[t]-9*x3[t],D[x3[t],t]==0*x1[t]-1*x2[t]-1*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(7*x__1(t) - 6*x__2(t) + 6*x__3(t) + Derivative(x__1(t), t),0),Eq(9*x__1(t) - 5*x__2(t) + 9*x__3(t) + Derivative(x__2(t), t),0),Eq(x__2(t) + x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)