76.26.11 problem 15
Internal
problem
ID
[17764]
Book
:
Differential
equations.
An
introduction
to
modern
methods
and
applications.
James
Brannan,
William
E.
Boyce.
Third
edition.
Wiley
2015
Section
:
Chapter
6.
Systems
of
First
Order
Linear
Equations.
Section
6.4
(Nondefective
Matrices
with
Complex
Eigenvalues).
Problems
at
page
419
Problem
number
:
15
Date
solved
:
Thursday, March 13, 2025 at 10:48:49 AM
CAS
classification
:
system_of_ODEs
\begin{align*} \frac {d}{d t}x_{1} \left (t \right )&=-3 x_{1} \left (t \right )+6 x_{2} \left (t \right )+2 x_{3} \left (t \right )-2 x_{4} \left (t \right )\\ \frac {d}{d t}x_{2} \left (t \right )&=2 x_{1} \left (t \right )-3 x_{2} \left (t \right )-6 x_{3} \left (t \right )+2 x_{4} \left (t \right )\\ \frac {d}{d t}x_{3} \left (t \right )&=-4 x_{1} \left (t \right )+8 x_{2} \left (t \right )+3 x_{3} \left (t \right )-4 x_{4} \left (t \right )\\ \frac {d}{d t}x_{4} \left (t \right )&=2 x_{1} \left (t \right )-2 x_{2} \left (t \right )-6 x_{3} \left (t \right )+x_{4} \left (t \right ) \end{align*}
✓ Maple. Time used: 0.140 (sec). Leaf size: 121
ode:=[diff(x__1(t),t) = -3*x__1(t)+6*x__2(t)+2*x__3(t)-2*x__4(t), diff(x__2(t),t) = 2*x__1(t)-3*x__2(t)-6*x__3(t)+2*x__4(t), diff(x__3(t),t) = -4*x__1(t)+8*x__2(t)+3*x__3(t)-4*x__4(t), diff(x__4(t),t) = 2*x__1(t)-2*x__2(t)-6*x__3(t)+x__4(t)];
dsolve(ode);
\begin{align*}
x_{1} \left (t \right ) &= {\mathrm e}^{-t} c_{1} +c_{2} {\mathrm e}^{t}+c_{3} {\mathrm e}^{-t} \sin \left (4 t \right )+c_4 \,{\mathrm e}^{-t} \cos \left (4 t \right ) \\
x_{2} \left (t \right ) &= c_{2} {\mathrm e}^{t}+c_{3} {\mathrm e}^{-t} \cos \left (4 t \right )-c_4 \,{\mathrm e}^{-t} \sin \left (4 t \right ) \\
x_{3} \left (t \right ) &= {\mathrm e}^{-t} \left (c_4 \cos \left (4 t \right )+c_{3} \sin \left (4 t \right )\right ) \\
x_{4} \left (t \right ) &= -{\mathrm e}^{-t} c_{1} +c_{2} {\mathrm e}^{t}+c_{3} {\mathrm e}^{-t} \cos \left (4 t \right )-c_4 \,{\mathrm e}^{-t} \sin \left (4 t \right ) \\
\end{align*}
✓ Mathematica. Time used: 0.019 (sec). Leaf size: 247
ode={D[x1[t],t]==-3*x1[t]+6*x2[t]+2*x3[t]-2*x4[t],D[x2[t],t]==2*x1[t]-3*x2[t]-6*x3[t]+2*x4[t],D[x3[t],t]==-4*x1[t]+8*x2[t]+3*x3[t]-4*x4[t],D[x4[t],t]==2*x1[t]-2*x2[t]-6*x3[t]+1*x4[t]};
ic={};
DSolve[{ode,ic},{x1[t],x2[t],x3[t],x4[t]},t,IncludeSingularSolutions->True]
\begin{align*}
\text {x1}(t)\to e^{-t} \left (c_1 e^{2 t}-c_2 e^{2 t}-c_3 e^{2 t}+c_4 e^{2 t}+c_3 \cos (4 t)-(c_1-2 c_2-c_3+c_4) \sin (4 t)+c_2-c_4\right ) \\
\text {x2}(t)\to e^{-t} \left ((c_1-c_2-c_3+c_4) e^{2 t}-(c_1-2 c_2-c_3+c_4) \cos (4 t)-c_3 \sin (4 t)\right ) \\
\text {x3}(t)\to e^{-t} (c_3 \cos (4 t)-(c_1-2 c_2-c_3+c_4) \sin (4 t)) \\
\text {x4}(t)\to e^{-t} \left (c_1 e^{2 t}-c_2 e^{2 t}-c_3 e^{2 t}+c_4 e^{2 t}-(c_1-2 c_2-c_3+c_4) \cos (4 t)-c_3 \sin (4 t)-c_2+c_4\right ) \\
\end{align*}
✓ Sympy. Time used: 0.203 (sec). Leaf size: 114
from sympy import *
t = symbols("t")
x__1 = Function("x__1")
x__2 = Function("x__2")
x__3 = Function("x__3")
x__4 = Function("x__4")
ode=[Eq(3*x__1(t) - 6*x__2(t) - 2*x__3(t) + 2*x__4(t) + Derivative(x__1(t), t),0),Eq(-2*x__1(t) + 3*x__2(t) + 6*x__3(t) - 2*x__4(t) + Derivative(x__2(t), t),0),Eq(4*x__1(t) - 8*x__2(t) - 3*x__3(t) + 4*x__4(t) + Derivative(x__3(t), t),0),Eq(-2*x__1(t) + 2*x__2(t) + 6*x__3(t) - x__4(t) + Derivative(x__4(t), t),0)]
ics = {}
dsolve(ode,func=[x__1(t),x__2(t),x__3(t),x__4(t)],ics=ics)
\[
\left [ x^{1}{\left (t \right )} = - C_{1} e^{- t} + C_{2} e^{- t} \sin {\left (4 t \right )} + C_{3} e^{- t} \cos {\left (4 t \right )} + C_{4} e^{t}, \ x^{2}{\left (t \right )} = C_{2} e^{- t} \cos {\left (4 t \right )} - C_{3} e^{- t} \sin {\left (4 t \right )} + C_{4} e^{t}, \ x^{3}{\left (t \right )} = C_{2} e^{- t} \sin {\left (4 t \right )} + C_{3} e^{- t} \cos {\left (4 t \right )}, \ x^{4}{\left (t \right )} = C_{1} e^{- t} + C_{2} e^{- t} \cos {\left (4 t \right )} - C_{3} e^{- t} \sin {\left (4 t \right )} + C_{4} e^{t}\right ]
\]