Internal
problem
ID
[18164]
Book
:
DIFFERENTIAL
EQUATIONS
WITH
APPLICATIONS
AND
HISTORICAL
NOTES
by
George
F.
Simmons.
3rd
edition.
2017.
CRC
press,
Boca
Raton
FL.
Section
:
Chapter
2.
First
order
equations.
Section
9
(Integrating
Factors).
Problems
at
page
80
Problem
number
:
4
(j)
Date
solved
:
Tuesday, January 28, 2025 at 11:35:46 AM
CAS
classification
:
[[_homogeneous, `class G`], _rational]
\begin{align*} -y+x y^{\prime }&=x^{2} y^{4} \left (x y^{\prime }+y\right ) \end{align*}
Time used: 0.033 (sec). Leaf size: 23
\[
y = \operatorname {RootOf}\left (x^{6} \textit {\_Z}^{4}+3-{\mathrm e}^{\frac {3 c_1}{2}} \textit {\_Z} \right ) x
\]
Time used: 60.122 (sec). Leaf size: 1141
\begin{align*}
y(x)\to -\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}+\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}}-\frac {1}{2} \sqrt {-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}-\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}-\frac {6 c_1}{x^3 \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}+\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}}}} \\
y(x)\to \frac {1}{2} \sqrt {-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}-\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}-\frac {6 c_1}{x^3 \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}+\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}}}}-\frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}+\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}} \\
y(x)\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}+\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}}-\frac {1}{2} \sqrt {-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}-\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}+\frac {6 c_1}{x^3 \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}+\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}}}} \\
y(x)\to \frac {1}{2} \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}+\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}}+\frac {1}{2} \sqrt {-\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}-\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}+\frac {6 c_1}{x^3 \sqrt {\frac {4 \sqrt [3]{2} x}{\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}+\frac {\sqrt [3]{9 c_1{}^2 x^3+\sqrt {-256 x^{12}+81 c_1{}^4 x^6}}}{\sqrt [3]{2} x^3}}}} \\
\end{align*}